
2.4. NUMERIC TYPES 29

2.4 Numeric Types

Integers

Integers are the most familiar of all the standard types. Any whole number
is an integer. Older computer languages, like C and Java, have limits on the
size of integer values due to the way they represent numbers internally. These
limits are large, around 2 billion, but occasionally we need numbers that are
larger than than these limits and this can create bugs in programs. Python has
no limit on the size of an integer value. For example, here is the number 100-
factorial (100!), which is the product of all of the integers between 1 and 100:
93326215443944152681699238856266700490715968264381621468592963895217
59999322991560894146397615651828625369792082722375825118521091686400
0000000000000000000000. This is a legitimate integer value in Python.

There are 7 standard arithmetic operators for integers:

Symbol Meaning Example Result
+ Addition 3 + 5 8
− Unary: negation −(3 + 4) -7

Binary: subtraction 7 − 3 4
∗ Multiplication 4 ∗ 7 28
/ Exact division 11/3 3.666667

12/3 4.0
// Whole division 11//3 3

12//3 4
∗∗ Exponentiation 2 ∗ ∗4 16

10 ∗ ∗ − 1 0.1
% Remainder 11%3 2

12%3 0

Most of these need no explanation. It may surprise you that there are two
different division operators, but both are useful. The ”exact division” operator
/ gives the quotient of its two operands as a floating point number. The ”whole
division” operator gives the whole number of times its second operand can
be divided into its first operand. You have computed remainders before in
mathematics classes, but mathematicians don’t have a standard symbol for the
remainder operation; programming languages do.

The remainder operator % is used more than you might expect. Suppose
numbers x and d are integers. If x % d is 0, then d divides evenly into x. This
has many applications. For example, we can tell if a number x is even or odd by
checking x % 2; if this is 0 then x is even and if it is 1 then x is odd. Similarly,
if day1 and day2 are two different dates of the same month, then they fall on
the same day of the week if day1%7 is the same as day2%7. For example, I am
writing this on July 8, 2015, which is a Monday. July 15, July 22 and July 29
are also Mondays: 8%7, 15%7, 22%7 and 29%7 are all 1.

There is a rule in most programming languages, that an operation between

30

two integers results in an integer, while an operation between an integer and a
float is a float. This holds for all of Python’s operators except for exact division
/ and exponentiation where the second operand, the exponent, is negative. In
early versions of Python a∗∗b wasn’t defined when b was negative, but negative
exponents are sufficiently convenient that the language designers finally relented
and allowed non-integer results.

Here is a table of comparison operators for integers. Each of these returns a
Boolean (True or False) value:

Symbol Meaning Example Result
< Less than 3 < 5 True

5 < 3 False
> Greater than 3 > 5 False

5 > 3 True
<= Less than or equal to 3 <= 5 True

5 <= 5 True
5 <= 3 False

>= Greater than or equal to 3 >= 5 False
5 >= 5 True
5 >= 3 True

== Equal to (comparison, not assignment) 3 == 5 False
5 == 5 True

! = Not equal to 3! = 5 True
5! = 5 False

Floating Point numbers

Floats are numbers that are not necessarily integers. They have a more complex
internal representation inside the computer (in binary) than integers do, and
there is not necessarily a perfect correspondence between decimal values and
floating point representations. For example, if you ask Python to compute
1.0/10, the result is not 0.1, but rather 0.10000000000000001. Of course, this is
close enough for most computational purposes, but it leads to some unexpected
results. If you ask the system whether 1.0/10 is 0.1, the answer is ”No”. If
general, it isn’t a good idea to directly compare two floating point values. You
can ask whether they are close (say within 0.00000001), but don’t test them for
equality.

Floats have the same arithmetic operators and the same comparison opera-
tors as integers:

2.4. NUMERIC TYPES 31

Symbol Meaning Example Result
+ Addition 3.2+5 8.2
- Unary: negation -(3.4+4.5) -7.9

Binary: subtraction 7.0-3.9 3.1
* Multiplication 4.2*5 21.0
/ Exact Division 12.6/3 4.2

11.0/3 3.6666666666
// Whole Division 12.6//3 4.0

11.0//3 3.0
** Exponentiation 2**3.6 12.125732532083186
% Remainder 11.0%3 2.0

10.5%3.3 0.6
< Less than 3.2 < 5.6 True
> Greater than 3.2 > 5.6 False
<= Less than or equal to 3.2 <= 5.6 True
>= Greater than or equal to 3.2 >= 5.6 False
== Equal to (comparison, not assignment) 3.2 == 5.6 False
! = Not equal to 3.2! = 5.6 True

When dividing decimal numbers we dont usually think of getting a ”remainder”,
but the definition for floats is the same as it is for integers: a%b is what remains
after we remove the largest possible integer multiple of b from a. One way we
might compute this for positive values of a and b is to repeatedly subtract b
from a until the result is smaller than b; that result is the remainder.

The print() function works with floats just as it does with integers. The
easiest way to control the number of decimal places printed with a float is to
use string formatting, which we describe in the next section. Similarly, input
works with floats just as it does with integers. Finally, the comparison operators
for floats are the same as those for integers.

Converting between types

Sometimes you have an integer variable that you want to change to a float, or
vice versa. There are several ways to achieve this. In Python you can use type
names like functions to convert values to these types. For example, if x has an
integer value, such as 23, and you want to get the floating point version of this,
23.0, you can get it as float(x). Similarly, we can get the integer version of a
floating point number x with int(x). This always rounds x towards 0: int(34.9)
is 34, and int(−34.9) is -34.

The Math library

The following table lists many functions that are available in the Math library
for Python. To use any of these you need to put the following line at the top of
your program:

from math import ∗

32

If you omit this line you will get an error message saying that the functions are
not defined.

Alternatively, you can include at the top of your program

import math

and prefix any item that you use from the library with ”math.”, as in

a r ea = math . p i ∗(r a d i u s ∗∗2)

The idea here is that you can either import all of the names from the library
into your program or you can just import a link that allows you to refer to
objects in the library though the < library−name> dot notation.

2.4. NUMERIC TYPES 33

34

Symbol Meaning Example Result

ceil(x)
The ceiling of x: the smallest whole num-
ber (still a float) greater than or equal to
x.

ceil(34.2) 35.0

ceil(-34.2) -34.0

floor(x)
The floor of x: the largest whole number
(still a float) less than or equal to x.

floor(34.2) 34.0

floor(-34.2) -35.0

fabs(x)
The absolute value of x: if x > 0 this is x,
and if x < 0 this is x.

fabs(34.2) 34.2

fabs(-34.2) 34.2

exp(x)
This returns where e is the base of the
natural logarithm.

exp(2) 7.38906

log(x)
This is the natural logarithm; some math
books call it ln(x).

log(15) 2.70805

log(x, base)
This is the logarithm of x with the given
base.

log(32, 2) 5.0

log10(x) This is log(x, 10). log10(100) 2.0
sqrt(x) The square root of x. sqrt(144) 12.0

sin(x)
This is the sine of angle x, where x must
be measured in radians. If you want to
use degree measure, use sin(radians(x)).

sin(30) -0.988032

sin(radians(30)) 0.5

cos(x)
This is the cosine of angle x, where x must
be measured in radians. If you want to use
degree measure, use cos(radians(x)).

cos(60) -0.952413

cos(radians(60)) 0.5

tan(x)

This is the tangent of angle x, where
x must be measured in radians. If
you want to use degree measure, use
tan(radians(x)).

tan(45) 1.619775

tan(radians(45)) 1.0

asin(x)
This is the angle, in radian measure, that
has x as its sine.

asin(0.5) 0.523599

degrees(asin(0.5)) 30.0

acos(x)
This is the angle, in radian measure, that
has x as its cosine.

acos(0.5) 1.047198

degrees(acos(0.5)) 60.0

atan(x)
This is the angle, in radian measure, that
has x as its tangent.

atan(1.0) 0.785398

degrees(atan(1.0)) 45.0

degrees(x)
This takes angle x, measured in radians,
and returns the number of degrees in x.

degrees(pi/4) 45.0

radians(x)
This takes angle x, measured in degrees,
and returns the number of radians in x.

radians(45) 0.785398

hypot(x, y)
This returns which is the length of the
hypotenuse of a right triangle whose other
sides have lengths x and y.

hypot(3, 4) 5.0

pi
pi is the ratio of the circumference of a
circle to its diameter.

pi 3.14159

e e is the base of the natural logarithm. e 2.71828

2.4. NUMERIC TYPES 35

The Random library

Random numbers are very useful for games, simulations, and other sorts of
programs that we will write. Python has a very powerful, easy-to-use library
of random number utilities. To use any of these, you need to put one of the
following line at the top of your program:

from random import ∗
import random

With the former line you can use the random functions directly; with the latter
line you need to prefix them with ”random.”, as in random.randint(1, 6). The
following is a small selection of the functions that are available in this library.
All of these functions return floating point values.

Symbol Meaning Example Result

random()
This returns a random floating poing
number between 0 and 1.

random() 0.23145

uniform(a, b)
This returns a random floating poing
number between a and b.

uniform(3, 5) 4.21368

randint(a, b) This returns a random integer between a
and b, possibly equal to either a or b.

randint(0, 1) 0

randint(0, 1) 1

seed(x)

This resets the starting point of the ran-
dom number generator based on the value
of x, which could be an integer, a floating
point value or a string. If you want num-
ber to be random but repeatable, set the
seed to the same value each time. This
doesnt return anything.

seed(”bob”) No output.

